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Abstract 

Background High body-mass index (BMI) is an established risk factor for late-life cognitive impairment and demen-
tia, but most evidence comes from high-income contexts. Existing evidence from cross-sectional data in low- 
and middle-income settings is inconsistent, and many studies do not adequately address potential sources of bias.

Methods We used data from Wave 1 of the Longitudinal Aging Study in India (LASI) (analytic N = 56,753) to estimate 
the association between BMI categories and cognitive functioning among older adults aged 45 + years using survey-
weighted linear regression models stratified by gender and controlling for potential confounders including demo-
graphic factors, socio-economic status (SES) characteristics, and health-related behaviors. To probe potential sources 
of bias, including residual confounding and reverse causation, we used weighting and trimming methods, sample 
restriction, and explored effect modification.

Results In fully adjusted models, relative to normal BMI underweight BMI was associated with lower cognitive scores 
(Men: -0.16 SD difference, 95% CI -0.18, -0.13; Women: -0.12 SD, -0.15, -0.10). Overweight and obesity were associated 
with higher cognitive scores in both men (overweight: 0.09; 0.07, 0.12, obese: 0.10; 0.05, 0.15) and women (over-
weight: 0.09; 0.07–0.12, obese: 0.12; 0.08–0.15). Estimates were similar after weighting and trimming but were attenu-
ated after excluding those with low cognition (≥1 SD below the mean relative to those with similar demographic 
characteristics). Positive associations between overweight and obese BMI and cognition were attenuated or null 
in those living in urban settings and those with higher levels of educational attainment.

Conclusions Underweight BMI is a risk factor for poor cognitive outcomes in adults 45 years and older and may be 
indicative of poor nutritional status and life-course disadvantage in India. In tandem with existing literature, supple-
mental analyses and effect modification results indicate that unmeasured confounding and reverse causation may 
explain the observed positive associations between overweight and obese BMI and cognitive functioning from cross-
sectional studies in low- and middle-income settings. Future data with longitudinal follow-up will be helpful to further 
disentangle biases.
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Introduction
Midlife body-mass index (BMI) is a well-established risk 
factor for dementia [1, 2]. However, most studies linking 
BMI and cognitive health come from high-income con-
texts [3–5]. Given that 68% of individuals with dementia 
are expected to live in low- and middle-income coun-
tries by 2050 [6], understanding differences between 
high-income and low- or middle-income contexts is 
important.

The population of older adults (> 60  years of age) in 
India is the second-largest globally, and is expected to 
more than double by 2050 [7]. The number of individu-
als with dementia in India is also expected to almost dou-
ble by 2050 [8]. In India and other developing countries, 
demographic and epidemiologic transitions have led to 
increases in the proportion of individuals who are over-
weight and obese, while the proportion of the population 
with underweight BMI remains high [9–11].

Studies on the association between BMI and cognitive 
outcomes from low- and middle-income settings have 
had mixed results. While some have reported that over-
weight and obese BMI are associated with higher risk of 
cognitive impairment [12, 13], many others have reported 
null or opposite findings [14–17]. Three prior studies in 
India found that those who were underweight had worse 
cognition, while those who were overweight or obese 
had higher levels of cognition compared to individuals in 
the normal BMI range [18–20]. However, existing cross-
sectional studies have largely ignored important analytic 
issues that can lead to biases.

Several methodological challenges must be carefully 
considered and evaluated when studying the associa-
tion between BMI and cognitive outcomes using cross-
sectional data from in low- and middle-income settings. 
First, in low- and middle-income settings, factors that are 
largely considered beneficial for health, such as income 
level and socio-economic status (SES), are associated 
with factors largely considered harmful to health, such as 
access to processed foods and increased intake of foods 
with high fat levels and added sugar [9, 21, 22]. These 
patterns create strong confounding structures, which 
may not be appropriately addressed through traditional 
observational research methods. Second, evidence that 
declining BMI is associated with worse cognitive out-
comes and declining cognition at later time points raises 
concern that cross-sectional findings of positive associa-
tions between BMI and cognition may be explained by 
reverse causation [23, 24].

Using data from the Longitudinal Aging Study in 
India (LASI), we sought to improve on existing cross-
sectional studies in low- and middle-income contexts 
by carefully considering and characterizing potential 
biases. We implement several methods for controlling for 

confounding beyond traditional regression adjustment, 
assess effect modification by factors that may influence 
sources of bias, and conduct a wide array of sensitivity 
analyses to provide a more comprehensive understanding 
of observed associations.

Materials and methods
Sample
The Longitudinal Aging Study in India (LASI) is a nation-
ally representative survey of over 72,000 adults aged 
45 years and older and their spouses in India [25]. Wave 
1 of the survey was fielded between 2017–2019 and col-
lected data included demographics, self-reported health 
conditions, physical measurements and biomarkers, 
and measures of cognitive functioning. The study was 
approved by the relevant Institutional Review Boards 
and informed consent was obtained from participants. 
For this analysis, we excluded individuals under 45 
(N = 6,687), individuals with missing BMI (N = 6,504), 
missing cognitive score (N = 2), or missing informa-
tion on other covariates (N = 2,316) (Appendix Fig. S1) 
(N = 56,753). However, we also conducted multiple impu-
tation to assess the robustness of our main findings to 
these exclusions in a sensitivity analysis (sensitivity analy-
sis N = 65,575).

Measurement of BMI and waist circumference
Measured height and weight were used to calculate BMI. 
We used proposed South Asian BMI cutoffs (< 18/18– 
22.9/23–25/ > 25  kg/m2) [26] in primary analyses and 
WHO BMI cutoffs (< 18.5/18.5–24.9/25–29.9/ > 30 kg/m2)  
[27] in sensitivity analyses. Waist circumference was 
measured to the nearest tenth of a centimeter and was 
used both continuously and categorized into quartiles for 
analysis.

Measurement of cognition
We used a general cognitive factor score estimated from 
22 cognitive tests administered. Tests covered cogni-
tive domains including orientation to time and place, 
immediate and delayed memory, executive function-
ing, language, and visuospatial functioning (full list in 
Appendix). We estimated the latent trait using a graded 
response item response theory model [28], which cap-
tures the common covariance between cognitive test 
items as a way of quantifying the underlying latent trait.

To improve the performance of this model, we incor-
porated more intensive cognitive testing from the LASI 
Diagnostic Assessment of Dementia (LASI-DAD) sub-
study (N = 4,096) [29]. We included all 11 common and 
42 non-common items in both the LASI and LASI-DAD 
studies in the item-response theory model. We scaled 
the general factor score to have a mean of 0 and variance 
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of 1 within the LASI-DAD population; in the current 
sample the mean and standard deviation were -0.01 and 
0.98 (men: 0.30 [SD = 0.97], women: -0.29 [SD = 0.97]). 
Ninety-seven percent of estimated scores had marginal 
reliabilities above 70% and scores were not sensitive to 
the inclusion of items that were dependent on literacy 
(correlation between scores including and excluding 
these items was 0.995).

Assessment of covariates
Covariates included state of residence, rural/urban resi-
dence, self-reported age, gender, marital status (married 
or partnered/not married or partnered), literacy status 
(reported ability to read or write), education (no school/
less than secondary school/secondary or higher second-
ary school/graduate school) and caste (no caste or other 
caste, scheduled caste, scheduled tribe, other backwards 
class). We considered health-related behaviors, includ-
ing smoking status (ever/never smoked or used smoke-
less tobacco), and self-reported moderate and vigorous 
physical activity (everyday/more than once per week/
once per week/1–3 times per month/hardly ever or 
never). We also considered covariates capturing socio-
economic status, including parental education (same cat-
egorization as above), per capita consumption quintile, 
and housing material (permanent vs. non-permanent 
materials). Finally, we considered depression sympto-
mology assessed using the short form of the Composite 
Diagnostic Interview (CIDI-SF) [30]. We categorized 
the total number of symptoms into three categories (No 
symptoms, 1–3 symptoms, 4–7 symptoms) based on the 
distribution of the data.

Statistical methods
We used descriptive statistics (means, proportions) to 
compare covariates and cognitive scores across BMI cat-
egories. To conduct statistical comparisons across BMI 
categories we used t-tests, 1-way ANOVA tests, and chi-
squared tests.

We used linear regression to estimate associations 
between BMI category and cognitive score. Prior research 
and initial models suggested the presence of an interac-
tion between gender and BMI [31]. In subsequent models 
including interactions between BMI and all covariates, 
we observed significant interactions between gender and 
7 of 14 hypothesized confounders. Because results sug-
gested complex interrelationships between gender, cogni-
tion, and BMI as well as the hypothesized confounding 
structures, we stratified all subsequent analyses by gen-
der. Although prior research has shown evidence of effect 
modification by age in the association between BMI and 
cognition [31, 32], in this setting effect modification by 
age category (< 50/51–60/61–70/71–80/81 +) was not 

statistically significant for men (p = 0.339) or women 
(p = 0.562). Therefore, subsequent models did not con-
sider interactions by age category.

We estimated three sets of models considering a range 
of factors hypothesized to be confounders of the asso-
ciation between BMI and cognition: Model 1 did not 
adjust for confounders, Model 2 adjusted for demo-
graphic factors (age [estimated with a natural cubic spline 
with internal knots at the 33rd and 66th percentiles and 
external knots at the 5th and 95th percentiles], and edu-
cational attainment), and Model 3 additionally adjusted 
for all other potential confounders considered (described 
earlier). To contextualize findings, we compared the mag-
nitude of coefficients to the coefficient for age from a 
model with only age (linear) and gender. As an alternative 
to using BMI categories, we also estimated an alternative 
version of Model 3 using a natural cubic spline on BMI 
with internal knots at the 33rd and 66th percentiles and 
external knots at the 5th and 95th percentiles to capture 
nonlinearities in the association between BMI and cogni-
tion. We estimated E-values to quantify the strength of 
unmeasured confounding necessary to explain observed 
effect sizes [33].

We conducted follow-up analyses to address potential 
residual and unmeasured confounding, or reverse causa-
tion. First, we used two weighting approaches for con-
trolling for confounding: inverse probability of treatment 
weighting and overlap weighting (details in Appendix) 
[34]. Overlap weights are derived from the same pro-
pensity scores used in inverse probability of treatment 
weighting, but down-weight individuals with extreme 
propensity scores and therefore make the two exposure 
groups more comparable. Second, we used trimming 
in addition to weighting to refine the target population 
and limit analyses to a study population with greater 
exchangeability between exposure groups, which has 
been shown to reduce unmeasured confounding in sim-
ulation studies [35]. For all models with weighting, we 
estimated models with and without controlling for all 
confounders included in Model 3. We also re-estimated 
models excluding those with low cognition (≥1 SD below 
the mean relative to those with similar demographic 
characteristics), as those with low cognition may drive 
reverse causation findings (details in Appendix).

Older adults with greater levels of education or who 
live in urban areas may have greater cognitive reserve 
and therefore, may be more resilient to early cognitive 
decline [36]. Thus, if reverse causation due to early cog-
nitive decline were responsible for positive associations 
between higher BMI and higher cognition, we would 
expect attenuated associations in these groups. Addi-
tionally, if those with greater education or those liv-
ing in urban areas are more homogenous, there may be 



Page 4 of 11Nichols et al. BMC Public Health         (2024) 24:2720 

less variability in demographic or SES-related factors, 
and therefore less residual and unmeasured confound-
ing within these subpopulations. We examined results 
across strata defined by rural/urban residence and educa-
tional attainment to assess the potential impact of these 
hypothesized biases. We used linear combinations of 
coefficients from regression models (adjusted for covari-
ates in Model 3) with interaction terms to quantify strati-
fied associations. We used chi-square tests to compare 
the overall statistical significance of adding the interac-
tion terms.

In a sensitivity analysis, we used multiple imputation 
to fill in missing data on BMI, cognition, and covariates 
and re-estimated regressions to evaluate the effect of 
using complete case analysis. Additionally, we explored 
the use of WHO BMI cutoffs rather than those specific to 
Asian Indians [26], and use of waist circumference as an 
alternative measure of adiposity. All analyses used survey 
weights to account for the complex survey design. Item 
response theory models were estimated in Mplus Version 
8. All other analyses were done using R version 4.2.2.

Results
Of 56,753 participants included in main analyses, 16.6% 
(95% Confidence Interval [CI] 16.2–17.0) were under-
weight, 42.0% (41.5–42.6) were normal weight, 14.6% 
(14.3–15.0) were overweight, and 26.7% (26.3–27.2) were 
obese. Markers of SES were strongly associated with BMI 
categories (Table  1). Individuals who were overweight 
and obese were more highly educated, more likely to be 
literate, less likely to belong to a scheduled caste or tribe, 
more likely to have housing built from permanent mate-
rials, and had higher per capita consumption. The oppo-
site was true of those in the underweight category. Those 
in the overweight and obese categories were less likely to 
smoke but also less likely report moderate or vigorous 
physical activity. All statistical tests of differences were 
statistically significant (p < 0.001).

In both men and women, cognitive scores were low-
est in underweight individuals, followed by individuals 
with normal BMI, overweight BMI, and then obese BMI 
(Table 1; Fig. 1). Crude patterns were attenuated but still 
present in models adjusting for demographic variables 
and for all considered confounders. In fully adjusted 
models, relative to normal BMI, underweight BMI was 
associated with a -0.13 (95% CI -0.16- -0.10) SD lower 
cognitive score in men and a -0.11 (-0.14- -0.10) SD lower 
cognitive score in women (Table 2, Appendix Table S1). 
Overweight and Obese BMI were associated with higher 
cognitive scores in both men (overweight: 0.11;0.08–
0.14, obese: 0.14;0.11–0.16) and women (overweight: 
0.07;0.04–0.10, obese: 0.13;0.10–0.15). As the estimated 
coefficient for age was -0.03 SD per year of age, observed 

associations were equivalent to between 2–4  years of 
age, suggesting observed effect sizes are small to moder-
ate. Findings were consistent in models using splines to 
capture nonlinearities in the association between BMI 
and cognition; in both men and women predictions of 
cognition increased linearly over BMI before flatten-
ing out at a BMI of 25  kg/m2, the threshold for obesity 
according to the South Asian cutoffs (Fig. 2). Across fully 
adjusted models for men and women, E-values ranged 
from 1.34 to 1.52 (Appendix Table S2). Estimates indi-
cate, for example, that to explain the observed associa-
tion between obesity and cognition, a set of unobserved 
confounders would have to be associated with both obe-
sity and cognition with a relative risk of 1.52 and 1.49 in 
men and women, respectively [37].

Inverse probability weights and overlap weights effec-
tively balanced included confounders (Appendix Fig. 
S2). Distributions of propensity scores had some areas 
of non-overlap prior to trimming, indicating potential 
lack of exchangeability between exposure groups. After 
trimming, there were no sections of the distribution 
without overlap (Appendix Figures S3, 4). However, esti-
mates for associations did not change substantially after 
applying weighting and trimming methods (Fig.  3). For 
all additional estimates considered (48), estimated confi-
dence intervals always included the corresponding mean 
estimate from Model 3. After excluding those with low 
cognition, estimates were attenuated but remained statis-
tically significant (Appendix Fig. S5).

We observed effect modification of the associa-
tion between cognition and BMI category by educa-
tional attainment and rural/urban residence (Fig.  4). 
Chi-squared tests indicated significant effect modifica-
tion among men for rural/urban residence (p = 0.027) 
and educational attainment (p = 0.027), but not among 
women (rural/urban p = 0.082; educational attainment 
p = 0.169), though patterns of findings were similar across 
genders. Estimates of associations between overweight 
and obesity were smaller or null in sub-groups with 
higher educational attainment or those in urban settings; 
estimates were shifted further in results from models 
excluding those with low cognition (Appendix Figure S6).

Sensitivity analyses using alternative WHO BMI cutoffs 
(Appendix Figure S7), using waist circumference quar-
tile instead of BMI category (Appendix Figure S8 & S9), 
or using multiply imputed data (Appendix Figure S10) 
yielded similar findings.

Discussion
In this study, underweight BMI was associated with 
lower cognitive scores and both overweight and obese 
BMI were associated with higher cognitive scores. The 
association was approximately linear over most of the 
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Table 1 Characteristics of participants in theLlongitudinal Aging Study in India (LASI) included in main analyses (N = 56,753)

All Underweight Normal Overweight Obese

N 56,753 8471 23,227 8571 16,484

Age 58.7 (50.0—65.0) 61.9 (53.0—70.0) 58.9 (50.0—65.0) 57.6 (50.0—64.0) 57.0 (50.0—63.0)

 45–49 25.9 (14,301) 18.5 (1465) 25.9 (5624) 28.8 (2333) 28.9 (4879)

 50–59 36.1 (18,350) 30.5 (2273) 35.4 (7303) 37.8 (2928) 39.8 (5846)

 60–69 25.5 (15,723) 30.4 (2734) 25.4 (6543) 23.7 (2249) 23.5 (4197)

 70–79 9.7 (6519) 15.0 (1460) 10.3 (2901) 8.0 (871) 6.5 (1287)

 80 + 2.8 (1860) 5.5 (539) 3.0 (856) 1.7 (190) 1.3 (275)

Women 46.5 (30,322) 45.6 (4424) 41.9 (11,282) 45.1 (4411) 55.0 (10,205)

Cognition -0.02 (-0.71—0.68) -0.50 (-1.12—0.13) -0.12 (-0.78—0.54) 0.18 (-0.49—0.84) 0.32 (-0.32—0.98)

Rural 68.9 (37,361) 86.1 (7170) 76.8 (17,240) 62.4 (5178) 49.5 (7773)

Education

 No school 52.6 (26,797) 70.3 (5646) 58.0 (12,243) 44.8 (3382) 37.5 (5526)

 Less than secondary school 21.5 (14,024) 18.5 (1830) 21.1 (5761) 23.0 (2243) 23.2 (4190)

 Secondary and higher secondary 20.8 (13,118) 10.2 (914) 17.4 (4475) 25.4 (2361) 30.2 (5368)

 Graduate school 5.0 (2814) 1.0 (81) 3.5 (748) 6.8 (585) 9.1 (1400)

Per Capita Consumption

 Quintile 1 22.4 (11,609) 32.8 (2764) 26.3 (5663) 17.3 (1364) 12.5 (1818)

 Quintile 2 21.7 (11,615) 25.8 (2111) 23.0 (5179) 21.3 (1660) 17.2 (2665)

 Quintile 3 20.0 (11,345) 18.9 (1604) 20.0 (4742) 20.4 (1738) 20.4 (3261)

 Quintile 4 18.8 (11,135) 13.9 (1192) 17.0 (4143) 20.8 (1884) 23.6 (3916)

 Quintile 5 17.2 (11,049) 8.5 (800) 13.7 (3500) 20.2 (1925) 26.5 (4824)

Caste

 No caste or other caste 26.4 (15,418) 17.6 (1535) 23.0 (5314) 29.2 (2570) 35.7 (5999)

 Other backward class 44.9 (21,589) 42.1 (3246) 44.9 (8742) 46.8 (3262) 45.6 (6339)

 Scheduled caste 20.0 (9662) 25.6 (1837) 21.6 (4210) 17.8 (1314) 15.1 (2301)

 Scheduled tribe 8.7 (10,084) 14.7 (1853) 10.4 (4961) 6.2 (1425) 3.6 (1845)

 Permanent house material 54.1 (30,407) 35.2 (2942) 48.4 (10,748) 61.3 (5163) 70.9 (11,554)

 Literate 46.7 (29,195) 28.7 (2658) 41.1 (10,613) 54.9 (5102) 62.2 (10,822)

Paternal Education

 No school 74.1 (41,309) 85.3 (7175) 78.3 (17,973) 69.4 (5878) 63.1 (10,283)

 Less than secondary school 15.9 (9704) 10.7 (959) 14.3 (3573) 18.4 (1703) 20.3 (3469)

 Secondary and higher secondary 8.7 (5010) 3.8 (313) 6.6 (1516) 10.6 (862) 13.9 (2319)

 Graduate school 1.3 (730) 0.3 (24) 0.9 (165) 1.7 (128) 2.6 (413)

Depression symptoms

 No symptoms 90.8 (52,391) 88.4 (7630) 90.9 (21,458) 91.2 (7947) 91.9 (15,356)

 1–3 symptoms 2.4 (1191) 2.8 (206) 2.2 (458) 2.6 (197) 2.3 (330)

 4–7 symptoms 6.8 (3171) 8.7 (635) 6.9 (1311) 6.2 (427) 5.8 (798)

Moderate physical activity

 Hardly ever/never 30.1 (17,193) 32.0 (2721) 28.7 (6907) 30.7 (2636) 30.7 (4929)

 1–3 times/month 3.6 (1714) 4.1 (292) 3.7 (726) 3.6 (258) 3.0 (438)

 Once/week 3.9 (2172) 3.5 (298) 4.2 (934) 4.1 (330) 3.6 (610)

 More than once/week 6.4 (3775) 6.6 (559) 6.4 (1624) 6.1 (579) 6.2 (1013)

 Everyday 56.1 (31,899) 53.8 (4601) 57.0 (13,036) 55.5 (4768) 56.5 (9494)

Vigorous physical activity

 Hardly ever/never 55.6 (33,729) 55.7 (4941) 51.1 (12,763) 56.5 (5168) 62.3 (10,857)

 1–3 times/month 5.4 (2897) 5.3 (458) 5.8 (1241) 5.5 (436) 4.9 (762)

 Once/week 3.8 (2117) 3.9 (340) 4.3 (908) 3.1 (277) 3.5 (592)

 More than once/week 7.5 (4068) 8.7 (677) 8.2 (1896) 7.7 (632) 5.5 (863)

 Everyday 27.6 (13,942) 26.4 (2055) 30.7 (6419) 27.2 (2058) 23.8 (3410)

Ever smoked 20.2 (10,519) 29.7 (2345) 23.0 (4997) 17.3 (1402) 11.4 (1775)

 Survey weighted means and inter-quartile ranges are shown for continuous variables, and survey weighted means and unweighted numbers are shown for binary 
variables
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range of BMI but flattened out at a BMI of 25  kg/m2. 
Results were consistent across analyses attempting to 
further control for residual and unobserved confounding 
but were attenuated in models excluding those with low 
cognition and in subgroups with higher education and in 
urban settings.

Results of cross-sectional associations between BMI 
category and cognition are in line with other studies 
from low- and middle-income settings including Chile 
[12], China [38], Central African Republic and Republic 
of Congo [39], South Africa [40], and India [20]. While 
some studies have found opposite or null associations for 

Fig. 1 Distributions of cognitive scores by body-mass index (BMI) category for participants in the Longitudinal Aging Study in India (N = 56,753)

Table 2 Associations between BMI category and cognition by gender from linear regression models

* p < 0.05, **p < 0.01, ***p < 0.001, Models adjusting for demographic variables adjusted for continuous age (spline), and educational attainment. The full adjustment 
set additionally included state, rural/urban residence, marital status, literacy, caste, paternal education, per capita consumption quintile, housing materials, smoking 
status, depressive symptoms, and moderate and vigorous physical activity. Coefficients can be interpreted as differences in SD units of cognition comparing each BMI 
category to individuals in the normal BMI group

Underweight Overweight Obese

Men

 Crude -0.36 (-0.40—-0.32)*** 0.34 (0.30—0.38)*** 0.51 (0.48—0.54)***

 Adjusted for demographics -0.17 (-0.20—-0.14)*** 0.15 (0.12—0.18)*** 0.19 (0.17—0.22)***

 Fully adjusted -0.13 (-0.16—-0.10)*** 0.11 (0.08—0.14)*** 0.14 (0.11—0.16)***

Women

 Crude -0.32 (-0.36—-0.29)*** 0.30 (0.26—0.34)*** 0.56 (0.53—0.59)***

 Adjusted for demographics -0.17 (-0.20—-0.14)*** 0.12 (0.09—0.15)*** 0.21 (0.19—0.23)***

 Fully adjusted -0.11 (-0.14—-0.08)*** 0.07 (0.04—0.10)*** 0.13 (0.10—0.15)***
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Fig. 2 Marginal predictions showing the nonlinear association between body-mass index (BMI) and cognition by gender from linear regression 
models with splines. Models were stratified by gender and adjusted for continuous age (spline), educational attainment, state, rural/urban 
residence, marital status, literacy, caste, paternal education, per capita consumption quintile, housing materials, smoking status, depressive 
symptoms, and moderate and vigorous physical activity

Fig. 3 Coefficient estimates for the association between body-mass index (BMI) category and cognition by gender from linear regression 
models. Results from the various analytic approaches are compared. Models that use weighting and additional adjust for confounders are noted 
by the presence of the term “ + confounders.” Models adjusting for demographic variables adjusted for continuous age (spline), and educational 
attainment. The full adjustment set additionally included state, rural/urban residence, marital status, literacy, caste, paternal education, per capita 
consumption quintile, housing materials, smoking status, depressive symptoms, and moderate and vigorous physical activity. Models for weights 
also included interaction terms between age and both education and rural/urban residence. IPW = Inverse probability weighting
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overweight and obese BMI [15, 16], discrepant findings 
may be explained by differences in the operationaliza-
tion of BMI as an exposure (categorical or continuous), 
the cognitive outcome used, or the age distributions of 
cohorts [31, 41].

Evidence that underweight BMI is strongly associated 
with lower cognition and worse cognitive outcomes has 
been more consistent [18, 42, 43]. Findings from the pre-
sent study, coupled with the high prevalence of under-
weight BMI in low-income settings [44], highlight the 
importance of this high-risk group. Underweight BMI in 
these contexts likely serves as a marker for poor nutrition 
and life-course disadvantage. Individuals with under-
weight BMI should be targeted for interventions and 
programs seeking to support individuals at high risk for 

poor cognitive outcomes and dementia in later life. Addi-
tionally, future research should seek to understand the 
specific features of poor nutrition and life-course disad-
vantage (e.g. iron deficiency) that have the largest contri-
butions to late-life cognitive health.

Results from analyses to better understand poten-
tial biases lend insights into potential explanations for 
observed positive associations between overweight and 
obese BMI and higher levels of cognitive functioning. 
Analyses using IPW, overlap weighting, or trimming 
yielded consistent results, and E-values indicated that 
unmeasured confounders would have to have a rela-
tive risk (or relative risk equivalent) of at least 1.40 with 
both the exposure and outcome to fully explain results. 
Although our set of measured confounders likely does 

Fig. 4 Estimates of the association between body-mass index (BMI) and cognition by gender and by educational attainment (A) and rural/urban 
residence (B). P-values are derived from chi-squared tests and quantify the overall statistical significance of including the interaction term
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not capture all facets of SES, we included a large and 
diverse set of potential SES influences. Taken together, 
results indicate that while unmeasured confounding may 
partially explain the observed positive association, there 
are likely other factors as well. Observed positive asso-
ciations between overweight and obese BMI and cogni-
tive functioning were attenuated after excluding those 
with low cognition, indicating a potential role for reverse 
causation.

Associations between BMI and cognition were not 
present or significantly attenuated in those with higher 
educational attainment or in urban settings. Effect modi-
fication could be due to differences across groups in two 
potential sources of bias: 1) residual and unmeasured 
confounding and 2) reverse causation. Residual and 
unmeasured confounding may be different across groups 
if there is less variability in unmeasured SES factors 
within groups living in urban settings or with high educa-
tional attainment. Reverse causation may also be different 
across groups if groups have different levels of cogni-
tive reserve. Reverse causation describes bias that arises 
because of capturing the effect of cognition on BMI when 
researchers are truly interested in the impact of BMI on 
cognition. Prior evidence indicates that reverse causation 
can have large impacts on observed associations between 
BMI and cognition because subtle changes in cogni-
tion early in the disease process may lead to weight loss 
[23, 24, 31]. However, cognitive reserve may modify this 
mechanism because those with high cognitive reserve 
may retain cognitive abilities longer before declining 
more rapidly [36]. Such modifications to the disease tra-
jectory among those with high reserve (those with higher 
educational attainment, or those living in urban areas, 
which may be more cognitively stimulating), may explain 
both effect modification findings and the overall positive 
associations between overweight and obesity and cogni-
tive functioning observed across studies [12, 20, 38–40].

Study limitations should be considered. Although 
future longitudinal data collection efforts are planned, 
currently the LASI study has collected only cross-sec-
tional data. Therefore, we cannot establish appropriate 
temporality between our hypothesized exposure (BMI) 
and outcome (cognitive functioning) and concerns about 
reverse causation are amplified. However, in this study we 
probed reverse causation using multiple follow-up analy-
ses, improving on prior cross-sectional studies in India 
and other low- and middle-income settings. Future stud-
ies should conduct longitudinal analyses when adequate 
follow-up time becomes available. Additionally, some 
measurement error in the assessment of cognitive func-
tioning likely exists and may be differential by education 
and/or literacy. Despite the likely presence of some error, 
we minimized measurement error by using advanced 

methods for the quantification of cognition. We also 
showed estimated cognitive scores were not sensitive to 
the inclusion of items requiring literacy.

Conclusions
In summary, we found associations between underweight 
BMI and lower cognitive functioning as well as over-
weight and obese BMI and higher cognitive functioning 
in India. Individuals with underweight BMI are at higher 
risk for poor cognitive outcomes and should be the target 
of interventions and support programs. Based on a wide 
array of supplementary and probing analyses and con-
textual evidence from other studies, we believe findings 
of positive associations between overweight and obese 
BMI and cognitive functioning may be due to a combina-
tion of unmeasured confounding and reverse causation. 
Future studies in low- and middle-income countries with 
extended longitudinal follow-up would help further tease 
apart sources of bias and establish causal relationships in 
these settings.
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